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Aspects of a large-eddy simulation (LES) model performance are investigated in
simulations of a moderately stable boundary layer. The LES utilizes the constant-coefficient
Smagorinsky–Lilly subgrid-scale (SGS) closure. Three model parameters are considered:
grid spacing, SGS model constant and order of accuracy (resolving power) of the advection
discretization. Second-, fourth- and sixth-order fully conservative non-dissipative advection
schemes are examined. All three model parameters considered significantly affect the
LES results. Depending on the value of the model constant, two main error-producing
mechanisms are identified. For high values of the model constant, spurious turbulence
collapse, either during the short period of model spin-up, or for the entire simulation
duration, is observed. Even though this spurious model characteristic was previously
documented, and perhaps expected for low-resolution simulations, it depends on the
order of the advection discretization, implying a significant discretization and SGS closure
interaction. For low values of the model constant, numerical discretization errors dominate,
leading to accumulation of energy at small scales and over-prediction of the magnitude of the
surface heat flux. Differences in potential temperature profiles are well correlated with the
surface heat flux. Overall, the fourth- and sixth-order schemes perform significantly better
than the second-order scheme. The differences between the fourth- and sixth-order schemes
are relatively small and the increased computational expense of the sixth-order scheme
may not be effective in most applications, at least for the low-order statistics considered
in this study. Even though the results of the Smagorinsky–Lilly closure show persistent
dependence on all model parameters examined, for several parameter combinations the
differences with respect to a reference simulation are small. Thus, in contrast to the
conclusions of previous studies, the closure can accurately capture moderately stable flows.
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1. Introduction

In stably stratified flows, vertical motions are suppressed because
vertical displacements require the expenditure of potential energy.
In a turbulent flow, this interplay between kinetic and potential
energy results in confinement and reduction of the vertical
energetic scale, reduced mixing, and increased anisotropy (e.g.
Fernando, 1991; Riley and Lelong, 2000; Ivey et al., 2008). Stable
stratification generates internal flow scales, e.g. the Ozmidov or
buoyancy scales, which significantly affect the turbulent dynamics
(e.g. Zilitinkevich et al., 2008; Chung and Matheou, 2012).

The presence of these internal flow scales can reduce the
effectiveness of modelling methods such as large-eddy simulation
(LES), which rely on explicitly capturing a wide range of turbulent
motions, because the ratio of the energetic flow scale to the grid
size decreases. Although it is difficult to unequivocally establish

this statement, LES of neutral and convective flows has been
widespread and fairly successful since the early LES attempts.
Simple closures based on Smagorinsky (1963) and Lilly (1962)-
type parametrizations captured essential flow characteristics, even
in flows that include capping inversions (e.g. Deardorff, 1970;
Sommeria, 1976; Sommeria and Deardorff, 1977; Schmidt and
Schumann, 1989; Cuijpers and Duynkerke, 1993).

In contrast, the LES model intercomparison study of a stable
boundary layer of Beare et al. (2006) shows a relatively large
spread in model results, even for bulk quantities such as the
boundary-layer height. In addition, most of the models in Beare
et al. (2006) and in the survey of Beare and MacVean (2004) do
not use the simple Smagorinsky–TKE (turbulent kinetic energy)
closures, but have more sophisticated formulations. All studies
that accurately captured weakly and moderately stable boundary
layers, and in some instances demonstrated grid convergence,
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used an advanced turbulence closure (e.g. Kosovic and Curry,
2000; Esau, 2004; Basu and Porté-Agel, 2006; Stoll and Porté-
Agel, 2008; Zhou and Chow, 2011; Huang and Bou-Zeid, 2013;
Matheou and Chung, 2014). It is unexpected that LESs using the
simple Smagorinsky closure were not able to capture weakly and
moderately stable boundary layers and achieve grid convergence.
Exceptions are the runs with the Smagorinsky closure of Matheou
and Chung (2014) which show good resolution independence for
grid lengths less than 4 m.

The aforementioned observations have led to the current study,
which aims to re-examine the performance of LES with the simple
Smagorinsky–Lilly closure for a moderately stable boundary layer
and resolve some of the seeming inconsistencies.

The underlying hypothesis of the present investigation is
that numerical discretization and turbulence closure parameters
contributed to the poor past Smagorinsky results. Accordingly,
improved model results can be obtained with modern numerical
methods and, if required, some model tuning. The improvement
of results will be assessed by comparison to a reference model
solution, which indirectly assesses grid convergence.

The current study aims to elucidate the impact of these
fundamental model choices in LES and to provide guidance for
model design and simulation of stably stratified flows in general.
Presently, only one boundary-layer case is considered. However,
the results should be applicable to weakly and moderately stable
boundary layers, i.e. with heights greater than the Obukhov length.
In this stability regime, continuous turbulence is sustained in the
boundary layer. In contrast, in strongly stratified flows, turbulence
collapse (e.g. Schubert, 1977; Poulos and Burns, 2003; Mahrt,
2011; Chung and Matheou, 2012; Ansorge and Mellado, 2014)
and bursts (e.g. Ohya et al., 2008; Liu et al., 2012; Van de Wiel
et al., 2012a) are expected and observed. These dynamics are
not expected in the present flow, but for some combinations of
model parameters turbulence collapse and bursts are observed
in the current LES runs. Such spurious turbulence collapse in
the present simulations is entirely a model artifact and has
been observed (or suspected) and discussed in previous studies
(Jiménez and Cuxart, 2005; Zhou and Chow, 2011; Van de Wiel
et al., 2012b).

The present study extends earlier investigations that examined
the performance of LES with Smagorinsky-type subgrid-scale
(SGS) closures in ‘dry’ (without water condensate) boundary
layers. For instance, Brown et al. (2000) investigated the effects
of advection discretization with respect to numerical dissipation
and model constant in neutral and convective flows. Beare and
MacVean (2004) and Beare et al. (2006) discussed resolution
and model-constant sensitivity in stable boundary layers. Brown
et al. (1994) carried out simulations with a refinement of the
SGS closure that incorporates backscatter (Mason and Thomson,
1992), and showed improvements with respect to the standard
purely dissipative formulation. In this article, a family of fully
conservative non-dissipative finite-difference advection schemes
of various orders is examined in combination with model constant
values and grid resolution. Overall, the differences between the
outcomes of the various model configurations are small, thus the
best metric to quantify the variations of model results is with
respect to a reference model run. A high-resolution reference run
with the buoyancy-adjusted stretched-vortex SGS model (Pullin,
2000; Voelkl et al., 2000; Chung and Matheou, 2014) is used. As
will be discussed in section 4, the conclusions are not sensitive to
the reference model, which is only used to construct quantitative
comparison metrics.

2. Large-eddy simulation

2.1. Governing equations

The formulation of the LES model is fairly standard. However,
for completeness, the governing equations and SGS model are
briefly described here.

The LES model of Matheou and Chung (2014) is used. In
LES the range of explicitly computed spatial (and temporal)
flow scales is limited by applying a spatial filter. The LES code
numerically integrates the filtered (density-weighted), anelastic
approximation of the Navier–Stokes equations (Batchelor, 1953;
Ogura and Phillips, 1962). Favre-filtered variables are defined
as φ̃ ≡ ρφ/ρ̄, where ρ is the density and the overbar denotes a
spatially filtered variable. The conservation equations for mass,
momentum, and potential temperature written on the f -plane
and neglecting resolved-scale viscous terms, are, respectively,

∂ρ̄0̃ui

∂xi
= 0, (1)

∂ρ̄0̃ui

∂t
+ ∂(ρ̄0̃uĩuj)

∂xj
= −θ0ρ̄0

∂π̄2

∂xi
+ δi3g

ρ̄0(θ̃ − 〈θ̃〉x)

θ0

− εijkρ̄0fj (̃uk−ug,k)− ∂τij

∂xj
, (2)

∂ρ̄0θ̃

∂t
+ ∂ρ̄0θ̃ ũj

∂xj
= −∂σj

∂xj
. (3)

The thermodynamic variables are decomposed into a constant
potential temperature basic state, denoted by subscript 0, and
a dynamic component. Accordingly, θ0 is the constant basic-
state potential temperature and ρ0(z) is the density. The subgrid
terms τij and σj represent the subgrid stress tensor and subgrid
θ flux, respectively. ui and ug,i are the Cartesian components
of the velocity vector and geostrophic wind, respectively, and
f = [0, 0, f3] is the Coriolis parameter. Buoyancy is proportional
to deviations of potential temperature from its instantaneous
horizontal average, 〈θ〉x. In the momentum equation (2), π2

denotes the dynamic part of the Exner function, π , i.e.

π0 + π1 + π2

cp
= π = T

θ
=

(
p

pref

) Rd
cp

, (4)

which is used to enforce the anelastic constraint (1). The
thermodynamic pressure, p, in each grid cell is computed from
(4), the sum of the basic state Exner, π0(z), plus a contribution
due to the deviation of the horizontal mean from the basic state,
π1(t, z), and the dynamic π2(t, x, y, z) (Clark, 1979). π1 balances
the mean vertical acceleration: dπ1/dz = 〈dw/dt〉x/θ0.

2.2. Subgrid-scale model

The SGS stress tensor and scalar flux are modelled using an
eddy-diffusivity assumption

τij = −2ρ̄0νt D̃ij, (5)

and

σj = −ρ̄0
νt

Prt

∂θ̃

∂xj
, (6)

where D̃ij is the zero-trace resolved-scale rate of strain tensor,

D̃ij = 1

2

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)
− 1

3
δij

∂ ũk

∂xk
. (7)

The eddy diffusivity for potential temperature is related to the
SGS momentum diffusivity, νt , through the constant model
turbulent Prandtl number, Prt = 0.33.

The closure originally introduced by Smagorinsky (1963) and
Lilly (1966, 1967) is used to compute the turbulent diffusivity

νt = Δ2|D̃|fm(Ri), (8)
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where Δ = Csx is the characteristic SGS length-scale, |D̃| =
(2D̃ijD̃ij)1/2 is the resolved-scale deformation, and fm a stability
correction function (Lilly, 1962),

fm = (1 − Ri/Prt)1/2 for Ri/Prt < 1
fm = 0 for Ri/Prt ≥ 1,

(9)

where Ri = N2/|D̃|2 is the gradient Richardson number and N is
the buoyancy frequency.

Near the surface, the characteristic length-scale is modified
to account for the confinement of the SGS eddies (Mason and
Callen, 1986),

1

Δ2
= 1

(Csx)2
+ 1

(κvz)2
, (10)

where κv = 0.4 is the von Kármán constant and z the height from
the surface.

The value of the model constant Cs has been the subject of many
investigations since the first attempts to model three-dimensional
turbulence (Lilly, 1966, 1967; Deardorff, 1971; Smagorinsky,
1993). Assuming homogeneous isotropic SGS turbulent flow and
classical Kolmogorov (1941) scaling, Lilly (1966) showed that Cs

can be theoretically determined.
A common assumption in LES is a balance between production

and dissipation in a stationary SGS flow,

ε = 1

2
τijD̃ij. (11)

Substituting the expression for the SGS stress tensor (5) for a
neutrally stratified flow, the SGS dissipation is

ε = Δ2|D̃/2|3/2. (12)

The exact expression for the deformation |D̃| requires integration
of the longitudinal and transverse velocity correlation functions
(Lilly, 1966). Following the approximate derivation of Lilly
(1967),

D̃ijD̃ij = 3

(
∂ ũ1

∂x1

)2

+ 6

(
∂ ũ2

∂x1

)2

. (13)

Using the isotropic relation for the velocity derivatives and their
relation to the so-called dissipation spectrum, the deformation
can be written in terms of the turbulence spectrum, E(k):

D̃ijD̃ij = 15

(
∂ ũ1

∂x1

)2

= 2

∫ π/x

0
k2E(k) dk. (14)

Assuming Kolmogorov scaling, E(k) = Cε2/3k−5/3,

|D̃|2 ≈ 3Cε2/3
( π

x

)4/3
. (15)

Dissipation is eliminated using (12) and, after rearranging, the
Smagorinsky constant depends only on the Kolmogorov constant:

Cs = 1

π

(
3

2
C

)−3/4

. (16)

For C ≈ 1.5 (Saddoughi and Veeravalli, 1994) the model constant
is Cs ≈ 0.173.

The determination of Cs relies on two important elements. First,
the existence of an inertial range near scale x. This implied grid
resolution prerequisite in Smagorinsky–TKE type SGS models is
discussed in Bryan et al. (2003) and Sullivan and Patton (2011).
Second, Lilly (1967) interprets the wavenumber, π/x, in (14)
as ‘the largest wavenumber unambiguously representable on a
finite difference mesh.’ This is a rather stringent requirement,

because, as discussed in the next section, the resolving power
of the different numerical schemes varies significantly with the
largest well-resolved wavenumber differing by factors up to about
four for the numerical schemes presently explored. For schemes
with poor resolving efficiencies (see next section), the value of Cs

should increase.
In the present simulations Cs is varied in the range 0.1–0.24.

The Cs interval is centred at the theoretical value and encompasses
most of the values used in the literature (e.g. Mason and Callen,
1986; Smagorinsky, 1993; Mason and Brown, 1999; Beare et al.,
2006).

2.3. Numerical discretization

The LES implementation uses finite differences to discretize
(1)–(3) on an Arakawa C (staggered) grid (Harlow and Welch,
1965; Arakawa and Lamb, 1977). An exact Poisson solver
using discrete Fourier transforms is used to compute the
modified pressure, π2, in (2), and satisfy the anelastic constraint
(Schumann, 1985). The same finite-difference scheme is used
in all three spatial directions, i.e. the numerical discretization is
isotropic.

Three approximations of the momentum and scalar advection
terms, ∂ρ0ujui/∂xj and ∂ρ0ujθ/∂xj, respectively, are examined.
The divergence form of the second-, fourth- and sixth-order
accurate staggered-grid schemes of Morinishi et al. (1998) is used.
All schemes are non-dissipative – all dissipation is supplied by the
SGS closure – and are fully conservative. That is, discrete kinetic
energy and scalar variance are conserved in a flow without any
physical dissipation. The original formulation of Morinishi et al.
(1998) is for a uniform density flow, and in the present LES the
finite differences are modified to include the density. Accordingly,
the conserved quantities are the mass-weighted variances, ρ0u2

i
and ρ0θ

2. The second-order scheme has identical properties to
the second-order skew-symmetric form of Piacsek and Williams
(1970) used in Brown et al. (1994).

Even though the advection schemes are identified by their
formal order of accuracy, the order of accuracy is not a principal
aspect of their performance in LES, because the numerical
solution changes as the grid resolution is varied. In other words,
ũ(t, x, y, z) is not converging towards a specific value as long
as there are unresolved scales. Fourier error analysis is used to
study the resolution characteristics of finite-difference schemes by
considering a periodic function f (x) and its corresponding Fourier
coefficients f̂ (κ). The exact first derivative is df /dx = iκ f̂ , where
i = √−1 is the imaginary unit and κ a scaled scalar wavenumber
such that κx is [0, π]. A similar expression for the first derivative
is obtained when it is approximated by a finite-difference scheme
(e.g. Lomax et al., 2003, p 37),

δf

δx
= iκ ∗̂f , (17)

where δ/δx denotes the approximation of the first derivative by
the finite-difference scheme. For centred-difference schemes, κ∗
is purely real and it approximates κ to the order of accuracy
of the scheme. The functions κ∗(κ) for the three schemes
presently used are shown in Figure 1. The range of wavenumbers
for which κ∗ approximates the exact differentiation increases
with the order of accuracy. This range of well-resolved Fourier
modes is quantified by the resolving efficiency r ≡ κ∗

r /π , where
κ∗

r is the largest well-resolved wavenumber for a given error
tolerance |κ∗(κ) − κ|/κ ≤ ε (Lele, 1992). For error tolerance
ε = 0.01, the resolving efficiencies of the three schemes are
0.05, 0.16, and 0.23. The resolving efficiency is independent of
the grid resolution and only depends on the finite-difference
scheme.

Another important property of the difference approximation is
that differentiation acts as an implicit filter. The finite-difference
approximation of the derivative of f (x) can be expressed as the
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Figure 1. (a) Modified wavenumber and (b) implicit filter transfer function versus wavenumber for the three finite-differences schemes. The curves are labelled with
the order of accuracy of each scheme.

exact derivative of a filtered variable with kernel G:

δf

δx
= d

dx

∫ ∞

−∞
G(x − x′)f (x′) dx′. (18)

The filter is determined by taking the Fourier transform,

iκ f̂ Ĝ(κ) = iκ ∗̂f . (19)

The implicit filter corresponding to the differentiation scheme is

Ĝ(κ) = κ∗

κ
. (20)

Figure 1(b) shows the implicit filters, Ĝ, for the three schemes. As
quantified by the resolving efficiencies, the band of well-resolved
wavenumbers of the three schemes varies significantly. Most of
the bandwidth improvement is between the second- and fourth-
order schemes, with a relatively smaller gain attained by the
sixth-order scheme.

An important limitation of Fourier analysis is that only linear
periodic problems are considered, thus nonlinear errors, such
as aliasing errors (e.g. Orszag, 1971), or the effects of boundary
conditions, are not taken into account. As discussed in section 4,
both these aspects are significant in the current simulations.

For all cases, regardless of the order of the advection scheme,
second-order centred differences are used to approximate the
spatial derivatives of the SGS model terms, including |D̃|, using
the discretization labeled ‘SMV’ in Matheou et al. (2011). Lilly
(1966) suggests that the theoretical value of Cs must be somewhat
adjusted when the continuous derivatives in the deformation,
|D̃|, are approximated by differences on the numerical grid. In
the present study, because the discretization of the SGS terms
remains the same regardless of the advection scheme order,
any effects of the SGS-term derivative approximation should be
inconsequential.

Periodic boundary conditions are used in the horizontal
directions. The semi-discrete system of equations is advanced
in time using the third-order Runge–Kutta of Spalart et al.
(1991).

The LES code was successfully used in several previous studies
(Matheou et al., 2011; Inoue et al., 2014; Matheou and Chung,
2014; Matheou and Bowman, 2016) and has been rigorously
tested and validated.

2.4. Flow and simulation set-up

The simulations follow the set-up of the first Global Energy
and Water Cycle Experiment (GEWEX) Atmospheric Boundary
Layer Study (GABLS) model intercomparison study (Kosovic
and Curry, 2000; Beare et al., 2006). The initial potential

temperature is constant θ(t = 0) = 265 K up to z = 100 m
and increases higher up with a lapse rate of 0.01 K m−1. The
geostrophic wind is ug(z) = 8 m s−1 and the Coriolis parameter
is f = 1.39 × 10−4 s−1 (73◦N latitude). The initial wind profile
is identical to the geostrophic wind. The surface temperature is
prescribed with T(t = 0) = 265 K and a surface cooling rate of
0.25 K h−1. The total water mixing ratio is assumed negligible with
null surface latent heat flux. The reference potential temperature
(2) is θ0 = 263.5 K.

The flow corresponds to a weakly stable arctic boundary
layer, where the term weakly stable refers to conditions that
can sustain turbulence without the creation of intermittent
laminar–turbulent layers. The boundary layer becomes quasi-
stationary after 8 h with a height which is about double the
Obukhov length based on the surface fluxes.

A potential temperature perturbation is added to the initial
condition to facilitate the transition of the horizontally uniform
flow to turbulence (also discussed in section 4.4). Only the
lowermost zr = 50 m levels are perturbed with fluctuations

θ ′(x, y, z) = α (1 − z/zr) rθ (x, y, z), (21)

where rθ are zero-horizontal-mean random numbers uniformly
distributed in [−0.5, 0.5]; the amplitude is α = 0.2. The
turbulent flow is neutrally stratified at the beginning of the
simulation with strong shear near the surface, thus the effects of
stable stratification are not significant during the initial simulation
spin-up and evolution of the boundary layer.

The domain height is 400 m, about double the boundary-
layer height. A Rayleigh damping layer is applied above 300 m,
to limit gravity wave reflection. The horizontal domain extent
varies depending on the grid resolution (section 3.1). The
smallest computational domain is 1 km long, about five times
the boundary-layer height.

3. Methodology

3.1. Parametric study

The simulations span the three-dimensional parameter space of
grid resolution x = 4–8 m, model constant Cs = 0.1–0.24, and
advection order: second, fourth and sixth. The grid resolution
increments are 1 m and Cs increments are 0.01 resulting in 120
runs for each advection order. For reference, the simulations in
Beare et al. (2006) have grid resolutions in the range 1–12.5 m.

Three series of runs are carried out: a sweep of the parameter
space using Monin–Obukhov similarity theory (MOST) for all
surface fluxes (360 runs); a series using prescribed surface heat
flux with fourth-order advection to investigate the effect of the
lower boundary condition type (120 runs); and a series with a
modified initial perturbation amplitude (2 runs). In addition,
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three high-resolution runs with x = 2 m are performed, one
with the reference stretched vortex model (SVM) closure and two
with the Smagorinsky for Cs = 0.18 and 0.23. A total of 485 LES
runs comprise the present study.

All simulations have a 400 m-high domain and 256 × 256
grid points in the horizontal directions (except the 2 m runs
that have 512 × 512 grid points), which results in a variable
horizontal domain extent. Fixing the domain size would restrict
the number of grid points for the coarser runs. For the current
investigation, it is important to allow a sufficient separation of
flow scales for turbulence to evolve; thus it was deemed essential
to have a minimum of 256 grid points or 1 km of domain length
in each of the horizontal directions. A series of domain-size
sensitivity simulations was carried out (not shown here) to verify
the adequacy of the domain size. Wind and temperature profiles
become domain-size independent for domains larger than 256 m
and turbulent fluxes are identical in runs with domains larger
than 512 m. All grids are isotropic, x = y = z.

In most simulations, MOST is applied locally, for each grid
point separately, to estimate the surface fluxes of heat and
momentum using Algorithm 2 of Basu et al. (2008). A series
of runs is carried out using prescribed (time-dependent) heat
fluxes obtained from the reference LES run, but with dynamically
computed momentum fluxes using MOST.

A high-resolution run with the buoyancy-adjusted SVM
(Pullin, 2000; Voelkl et al., 2000; Chung and Matheou, 2014) is
used for reference. LES results with SVM exhibit good agreement
with theory and observations, and are resolution-independent
for various boundary-layer flows, even for resolutions that are
typically considered coarse (Matheou and Chung, 2014). Thus,
the use of SVM as a reference model is justified.

The reference run uses the sixth-order advection scheme, SVM
closure and 2 m resolution with 512 × 512 × 200 grid points.

3.2. Flow statistics

Two types of flow statistics are considered: vertical profiles
averaged in the horizontal directions and time in t = 8–9 h
(when the boundary is in quasi-steady state), and time
traces of the magnitude of the mean surface momentum
flux, (〈uw〉2

x + 〈vw〉2
x)1/2, surface sensible heat flux, 〈wθ〉x, and

vertically integrated turbulent kinetic energy (TKE),

1

2

∫ Lz

0
ρ0(〈u′2〉x + 〈v′2〉x + 〈w2〉x) dz,

where Lz is the LES domain height. The angle brackets with the
subscript x, 〈·〉x, denote an instantaneous horizontal average
whereas plain angle brackets, 〈·〉, denote a horizontal–time
average. Figures 2 and 3 show examples of profile and trace
statistics, respectively.

3.3. Profile and surface flux error metrics

To understand the behaviour of the Smagorinsky runs as the
LES model parameters vary, the reference run with the SVM,
sixth-order advection and x = 2 m is used to form quantitative
measures. The present comparison does not imply that the SVM
run is identical to a fully resolved flow simulation (e.g. a direct
numerical simulation) which is the absolute reference or ‘truth’.

For the flow profiles, the ‘error’, or more appropriately the
difference, between a Smagorinsky and the reference run is
quantified by the l2-norm,

l2φ =
(∑

k

(〈φ(k)〉 − 〈φ(k)ref 〉)2

)1/2

, (22)

for the discrete variable φ(k), φ = {u, v, θ}, where k is a x = 2 m
run model-level index and the sum is over all model levels. All
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Figure 2. Profiles of (a) zonal and (b) meridional wind, and (c) potential temperature and their vertical turbulent fluxes (d)–(f) for four runs of the parametric study
and the reference model. The legend symbols show the grid spacing (m), the value of the Smagorinsky constant Cs and the order of accuracy of the advection scheme.
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Figure 2 and the reference model. Momentum flux traces show the flux magnitude, (〈uw〉2

x + 〈vw〉2
x)1/2. The spurious turbulence collapse is visible in the traces.

profiles are interpolated on the reference simulation grid such
that all φ vectors have the same length. Polynomial interpolation
corresponding to the order of the finite-difference approximation
is used, i.e. different polynomial orders are used for each advection
scheme order. Because the l2-norm differences span a wide range
of values, a logarithmic error scale is used for the wind components
and potential temperature,

E{u,v} = log(l2{u,v}/Ug), (23)

Eθ = log(l2θ /θ0), (24)

respectively, where Ug = 8 m s−1 is the magnitude of the
geostrophic wind and θ0 = 263.5 K the reference potential
temperature. The natural logarithm is used to form E{u,v,θ}, which
depends on x, Cs, and the advection scheme. Even though the
boundary-layer height is not directly considered, the normalized
error E encapsulates boundary-layer height differences. As shown
in Figure 2, most of the profile differences are because of
different boundary-layer depths, particularly in the θ profiles.
The direction of the difference in height, i.e. higher or lower
with respect to the reference, can be inferred from the surface
flux difference. The detailed dependence of the quasi-equilibrium
boundary-layer height and profiles on the boundary conditions
is discussed in several studies (e.g. Nieuwstadt, 1984; Derbyshire,
1990; Zilitinkevich and Mironov, 1996).

For the surface fluxes the difference,

d = 1

T

∫ T

0
〈wφ〉x,ref dt − 1

T

∫ T

0
〈wφ〉x dt, (25)

where 〈wφ〉x is either the surface momentum (〈uw〉2
x + 〈vw〉2

x)1/2

or heat flux 〈wθ〉x, is used to quantify the error. The flux
differences are plotted based on (25) to preserve the sign and
d has the units of the corresponding surface flux.

Using the l2-norm and the mean surface flux difference has the
advantage of reducing the difference between two runs to a single
scalar value, which aids the comparison.

3.4. Spurious turbulence collapse flag

Figure 3 shows time traces of momentum and temperature surface
fluxes, and vertically integrated TKE for a sample of four runs
from the parametric study. The TKE traces of the run with
x = 8 m, Cs = 0.23, and second-order advection show that
turbulence cannot be continuously sustained in the boundary
layer. The boundary layer exhibits a global turbulence collapse
that is interjected by bursts of increased activity. Turbulence
collapse and bursts alter the surface momentum and heat fluxes,
which show similar spikes and smooth regions. Global turbulence
collapse, i.e. entire boundary-layer laminarization, is clearly an
invalid flow state and all such LES runs do not reproduce a realistic

flow. Global turbulence collapse is presently defined as periods
after model spin-up (t > 2 h) when the vertically integrated TKE is
nearly zero (< 5 kg s−2), that is, the flow exhibits no fluctuations.

The TKE trace of the run with x = 7 m, Cs = 0.22, and
fourth-order advection shows turbulence collapse during model
spin-up with subsequent recovery for the remainder of the
simulation. Similar features during the simulation spin-up can be
observed in Figure 6 of Beare et al. (2006). The collapse during
model spin-up, occurring in the first 2 h, does not invalidate
the entire run, but may result in increased model errors. The
error is mainly introduced through the modified surface fluxes
of momentum and heat (Figure 3) since the initial collapse alters
the time integral of drag and cooling of the boundary layer (when
a temperature boundary condition is used). In other words, the
comparison of two simulations at time t can be affected by
this large deviation of surface fluxes, rather than the turbulent
boundary-layer dynamics. The collapse during model spin-up can
be affected by the initial perturbation and such effects are discussed
in section 4.4. Also, effects of the type of boundary condition
(prescribed surface temperature or its flux) are discussed in
section 4.3. Turbulence collapse during model spin-up is defined
as nearly zero (< 5 kg s−2) vertically integrated TKE for t < 0.5 h.

A collapse flag or index is defined and each LES run
is categorized as either exhibiting global turbulence collapse,
turbulence collapse during model spin-up, or no collapse. Figure 4
shows the collapse flag for the three LES parameters: x, Cs, and
advection order. Runs exhibiting collapse during model spin-up
are a subset of the global collapse runs.

4. Results

4.1. Spurious turbulence collapse

Figure 4 shows the collapse flag for the three parameters x,
Cs, and advection order. Each panel of Figure 4 corresponds to
a different advection order, which is the only discrete variable
of the parameter space. The flow statistics are expected to vary
smoothly with respect to the continuous x and Cs variables,
because of their role in the turbulent diffusivity. To aid the
comparison of results, many of the figures show discrete values
for each x–Cs pair, rather than contour plots that are expected
for a continuously varying parameter space. In Figure 4, runs with
global collapse are denoted by black fill colours, collapse during
model spin-up by grey fill colours and white by always-turbulent
simulations. Contours of Δ = Csx are superimposed on the
plots of Figure 4. Only a subset of runs, those with Cs ≥ 0.18, are
shown in Figure 4 because no collapse is observed for smaller Cs.

Perhaps as expected, x and Cs affect spurious turbulence
collapse, with coarse simulations and higher Cs values, i.e. higher
Δ, being more prone to collapse. However, the collapse flag
does not follow the Δ contours and spurious turbulence collapse
is confined to high Cs. The turbulence closure depends on Δ
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Figure 4. Turbulence collapse flag for (a) second-, (b) fourth- and (c) sixth-order advection. Black regions indicate global turbulence collapse, grey regions collapse
during model spin-up, and white fully turbulent boundary layers. Grey curves denote constant Δ = Csx contours.

whereas advection discretization errors only depend on x. In
addition, the significant differences with respect to the advection
scheme imply that the order of accuracy, i.e. the resolving
efficiency, of the advection discretization has a significant impact.
There is a direct effect of advection discretization on turbulence
closure performance. Spurious turbulence collapse is confined
to higher Δ for higher-order schemes. This interaction between
numerics and turbulence closure has been observed and studied
in neutrally stratified flows (Ghosal, 1996; Chow and Moin, 2003).
The present results show that numerics–closure interactions in
stably stratified flows are also significant with spurious turbulence
collapse being an additional mechanism of model error.

4.2. Differences with respect to the reference model

The spurious turbulence collapse flag shown in Figure 4 is only one
metric of model error. To quantify the quality of the simulations
that sustain turbulence and explore the lower range of Cs, the
error metrics with respect to the reference model (23–25) are
used. Figures 5–7 show the differences of zonal and meridional
wind, and potential temperature with respect to the reference

run. Figures 5–7 include runs that exhibit turbulence collapse to
provide a comparison of the different error type magnitude.

The distribution of error is similar between the u and v wind
components and, for most Cs values, does not monotonically
decrease with grid resolution. The non-monotonic variation of
flow statistics with respect to resolution in LES, although not well
understood, is commonly observed, e.g. Figure 3 of Beare and
MacVean (2004) and Figures 5 and 12 of Matheou and Chung
(2014). In contrast, the potential temperature error decreases with
resolution in the parameter range explored. Overall, the largest
errors are observed when the second-order scheme is used.
The fourth- and sixth-order schemes show similar values and
distributions of the difference with respect to the reference run.

Figures 8 and 9 show surface flux differences, d, for momentum
and temperature. The temperature error in Figure 7 is well-
correlated to the surface heat flux difference shown in Figure 9.
Because the surface fluxes are dynamically computed, this relation
cannot result in a causal relationship, i.e. if θ errors are caused by
the surface flux errors or the reverse. Similar to the wind errors,
the momentum surface flux difference (Figure 8) increases with
decreasing resolution for Cs < 0.18. This trend is reversed for
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Cs > 0.18: the momentum flux converges to the reference run
with decreasing x. The heat flux errors also drift with respect to
x, but always decrease in absolute value irrespective of Cs. The
spectral analysis in section 4.5 provides further insight into the
surface fluxes behaviour.

4.3. Prescribed sensible heat flux

To eliminate the feedback between boundary-layer turbulence
and surface heat flux, an additional set of runs was carried
out by prescribing the surface heat flux. The time-dependent
sensible heat flux from the reference run (black continuous line
in Figure 3(b)) is used uniformly in all surface grid cells of the
Smagorinsky runs. The momentum flux is computed dynamically
using MOST as before. Only runs with the fourth-order advection
are performed with prescribed heat fluxes.

Even though the prescribed heat flux is largely consistent with
the boundary-layer dynamics in the mean, it cannot adjust to the
local spatial and temporal temperature fluctuations. This changes
the overall behaviour of the flow. As shown in Figure 10, most of
the runs show spurious turbulence collapse during model spin-
up and the region of global collapse is expanded. The regime of
collapse during model spin-up is expanded from Cs > 0.22 to
Cs > 0.14. The profile difference plots of Figure 11 show altered
distributions compared to (b) of Figures 5–7. The difference with
respect to the reference runs is larger at finer resolutions and the
difference distribution appears more random compared to the
runs with temperature boundary condition. Basu et al. (2008)
show that prescribing the surface heat flux should be avoided
in very stable conditions. Although the present conditions are
not part of the expected pathological regime for strongly stable
boundary layers, significant model sensitivity is observed with
respect to the type of surface boundary condition used.

4.4. Initial perturbation

The observed spurious global turbulence collapse is attributed
to limitations of the turbulence closure and it is expected to be
independent of the initial condition. In contrast, the turbulence
collapse during model spin-up is directly affected by the initial

condition. Because of the relatively high value of the geostrophic
wind and the initially neutral lapse rate near the surface, the
flow should develop shear instabilities and quickly transition
to turbulence. The purpose of initial perturbation (21) is to
introduce randomness, such that the flow quickly de-correlates
from the initial condition, and not to induce the transition to
turbulence. Accordingly, initial perturbations have very small
amplitudes.

Deviating from initial perturbations aimed at only introducing
randomness, three cases are carried out with double and four
times the base perturbation amplitude α = 0.2 of (21). The cases
correspond to fourth-order advection, Cs = 0.22, and x = 6,
7 and 8 m. The base x = 6 and 7 m runs exhibit turbulence
collapse during model spin-up and x = 8 m global collapse
(Figure 4). Figure 12 shows the vertically integrated TKE traces
for all runs. Doubling the perturbation amplitude results in
essentially no change in the TKE traces. Runs with 4α do not
exhibit collapse during model spin-up, but for x = 8 m, large
TKE variations are observed.

Even though the increase of the initial perturbation amplitude
appears to address the spurious turbulence collapse, it does not
amount to a solution of the problem because it is an artificial
introduction of potential energy which gets converted to kinetic
energy after initialization. In other words, it alters the character
of the initial-boundary value problem.

4.5. Spectral analysis and surface fluxes

The average flow statistics that form the error metrics and
turbulence collapse flag do not take into account the multi-
scale character of the turbulent flow. To gain insight into the
energy distribution across scales, the spectra of zonal wind and
potential temperature are considered. Of primary interest is the
effects of Cs on the turbulence energy (and variance) cascade and
the representation of small scales near the surface and aloft.

The one-dimensional energy spectra are computed by taking
the two-dimensional Fourier transform of u(x, y, z) at constant
z, û(kx, ky, z), and then averaging across ky to form Euu(kx, z),
or similarly, Eθθ for the potential temperature spectrum. This
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and fourth-order advection. Black regions indicate global turbulence collapse and
grey regions collapse during model spin-up.

procedure reduces some of the aliasing of the y modes onto
the low wavenumbers of the x direction, which is present when
spectra are computed using one-dimensional transforms. All
spectra are computed at the end of the run, t = 9 h, and no time
averaging is performed, to avoid any masking of numerical errors.
This results in somewhat noisy spectra, but their overall shape is
readily discernible.

Figures 13 and 14 show the compensated spectra of u and
θ for runs with x = 4 m and sixth-order advection at three
heights: the first model half-level z = z/2 = 2 m, at z = 30 m,
and z = 100 m at boundary-layer half-height. The compensated
spectra show nearly inertial scaling, i.e. ‘flat’ regions, for kxz > 1
and peak at about kxz = 1 near the surface. As expected, Cs affects
the high wavenumber range of both u and θ spectra, with higher
Cs resulting in more damping of the fine-scale fluctuations (the
eddy diffusivity depends on C2

s ). The effect of Cs appears to extend
to the highest decade of wavenumbers, with energy accumulation
before the final roll-off for the lowest Cs values. This is most
evident at z = 30 m at about kxz ≈ 10 (Figures 13 and 14).

The roll-off of the spectra at the highest wavenumbers is due to
the implicit filter of the finite differencing (18). Figure 15 shows
this effect for runs with x = 8 m and Cs = 0.18. Because the
domain is larger than the x = 4 m runs of Figure 14, leading to
a broader scale separation, the spectra at z = 100 m of Figure 15
exhibit good inertial scaling.

The potential temperature spectra, particularly near the surface,
show indications (the small ‘hook’ at the high-wavenumber end)
of aliasing (Orszag, 1971). Aliasing is a form of numerical error
caused by the nonlinear interactions of the quadratic term of the
equations of motion and it is common in simulations of fluid
flows (e.g. Donzis et al., 2010; Chung and Matheou, 2012, 2014).
Typically, in LES, the strong dissipation action of the SGS model
at the smallest scales prevents the growth of aliasing errors. This
grid-scale accumulation of energy is not discernible in the velocity
spectra. Even though the magnitude of the grid-scale fluctuations
is relatively small because of the SGS model dissipation and the
finite-difference filter, the presence of increased numerical error
at the lowermost grid level can affect the calculation of the surface

fluxes. The spectra in Figures 13 and 14 correspond to the finest
resolution which exhibits the least amount of aliasing errors.

To assess the impact of grid-scale potential temperature
numerical errors at the first model half-level, the probability
density functions (pdfs) of the temperature difference between the
first model half-level and surface, θ(t, x, y) = θ(t, x, y, z/2) −
θsrf (t), are shown in Figure 16 for runs with x = 8 m,
Cs = 0.1–0.18 and sixth-order advection. The pdfs are computed
at times t = 1, 2, and 3 h in order to explore the observed drift
of the heat flux with respect to the reference run (run x = 8 m,
Cs = 0.1, sixth-order in Figure 3; and Figure 9). The pdfs of θ

become broader, particularly for larger θ , as Cs decreases, which
leads to more negative (larger in absolute value) heat fluxes. The
surface heat flux, unlike the momentum flux, depends nonlinearly
(cubic) with respect to θ , e.g. Figure 2 of Basu et al. (2008) and
related discussion therein. Presently, the boundary-layer height
increases significantly when the surface flux magnitude is over-
predicted, for instance, run x = 8 m, Cs = 0.1, and sixth-order
advection in Figures 2 and 3. As shown in Figure 9, the drift
of the surface heat flux is reduced as resolution increases and
in cases with Cs > 0.18. Increased numerical errors result in
broader steady-state θ distributions leading to different mean
surfaces fluxes, even though the cooling rate, bulk boundary-layer
temperature difference and surface flux computation method are
identical. This is likely the reason for the variation of the surface
flux in Figure 4 of Beare et al. (2006).

Overall, for the present parametric study, the spectral analysis
suggests that Cs < 0.18 leads to increased numerical errors that
manifest as accumulated energy (spectral ‘bumps’) at small scales
in u and θ and aliasing for θ near the surface. Figures 5–7 show
that, for some combinations of x and Cs, when Cs < 0.18 the
differences with respect to the reference model can be small.
However, the wind-field error does not monotonically decrease
as x is reduced and it is likely that this behaviour is problem-
dependent, e.g. depends on the atmospheric stability. In summary,
Cs values near or somewhat larger than the theoretical, C > 0.17,
yield the expected model behaviour: monotonic convergence with
respect to x and inertial range scaling for kxz > 1. Larger values
of Cs can be used to control numerical errors, such as aliasing.
However, high Cs in combination with coarse grid resolutions and
low advection scheme resolving efficiencies can lead to spurious
turbulence collapse.

4.6. Fine-scale simulations

Based on the conclusions of the parametric study, two additional
runs with the Smagorinsky closure are carried out with an
otherwise identical setup as the reference run, i.e. with the
sixth-order advection and x = 2 m. Cs = 0.18 and 0.23 are
used. The two Smagorinsky fine-scale simulations are a type of
‘consistency check’ to confirm that, for sufficiently high resolution
and judicious model-parameter choices, the two SGS closures can
yield similar results. Figures 17 and 18 compare the profiles and
time traces with the SVM (reference) run. Overall, the agreement
is good, but some differences and sensitivity to Cs remain,
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Figure 14. As Figure 13, but for potential temperature.
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Figure 16. Probability density functions (pdfs) of the potential temperature difference between the first model half-level, z = z/2, and the surface at three times (a)
t = 1 h, (b) 2 h, and (c) 3 h for five different values of the Smagorinsky constant. The pdfs are for runs with x = 8 m, sixth-order advection and Cs values 0.1, 0.12,
0.14, 0.16, and 0.18. Broader pdfs result from lower values of Cs.

especially in the surface fluxes. The two fine-scale simulations
corroborate the main conclusion of the parametric study that the
Smagorinsky–Lilly closure exhibits sensitivity to the grid spacing
and Cs with some combinations of these parameters yielding
accurate results. The optimal model parameter values are likely
flow-dependent, e.g. vary with the strength of the stratification,
thus a search for the optimal values is not pursued.

5. Conclusions

The present study examines some aspects of the performance
of a large-eddy simulation model with the Smagorinsky–Lilly
subgrid-scale closure in simulations of a moderately stable
boundary layer (Beare et al., 2006). Three model parameters are
considered: the grid spacing, the value of the SGS model constant
and the order of accuracy (resolving power) of the advection
discretization. A reference run with the stretched-vortex SGS
model (Chung and Matheou, 2014; Matheou and Chung, 2014)
is used to form quantitative metrics for comparison.

The current investigation extends previous studies of LES
model performance of ‘dry’ (without water condensate) boundary
layers. A significant characteristic of the present simulations is that
all advection schemes are fully conservative and non-dissipative.
The second-, fourth- and sixth-order schemes from the family of
centred staggered schemes of Morinishi et al. (1998) are used.

All three model parameters examined significantly affect the
LES results. Depending on the value of the model constant, two
main error-producing mechanisms are identified:
(i) For high values of the model constant, Cs > 0.18, spurious
turbulence collapse, either during the short period of model spin-
up, or for the entire simulation, is observed. Global turbulence
collapse is interjected by bursts of increased activity. Even
though this spurious model characteristic was previously observed

(Jiménez and Cuxart, 2005; Zhou and Chow, 2011; Van de
Wiel et al., 2012b), and perhaps expected for low-resolution
simulations (Mason and Callen, 1986), it is found to depend on
the resolving power of the advection discretization as well. This
implies significant discretization and SGS closure interaction.
(ii) For low values of the model constant, numerical discretization
errors dominate, leading to accumulation of energy at the small
scales and over-prediction of the magnitude of the surface heat
flux.

Overall, the fourth- and sixth-order schemes perform better
than the second-order scheme. The performance of the second-
order scheme is poor and fine grid resolutions and lower values
of the model constant are required to maintain turbulence and
acceptable differences with respect to the reference run. The
differences between the fourth- and sixth-order schemes are
small and the increased computational expense of the sixth-order
scheme may not be effective in most applications, at least for the
low-order statistics considered in this study.

Even though theoretical considerations suggest that Cs should
be significantly adjusted based on the resolving power of the
advection scheme (e.g. increase by factors of two or more for
low-order schemes), the practical range of Cs in the current
simulations is limited to a narrow range somewhat higher than
the theoretical value, Cs ≈ 0.18–0.23.

For the current simulations, surface fluxes vary for different
model constants, even for finely resolved runs with high-
order advection discretizations. Although the impact of the
surface fluxes on the boundary-layer dynamics is expected (e.g.
Zilitinkevich and Mironov, 1996), the observed differences are
relatively large given that the flow configuration is identical.
The present runs show the importance of the feedback between
boundary-layer turbulence and surface flux.
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Figure 18. Time traces of (a) surface momentum flux, (b) surface heat flux and (c) vertically integrated TKE for the high-resolution runs, x = 2 m. Line styles are
as in Figure 17.

To eliminate the feedback between turbulent flow and surface
heat flux, a series of runs with prescribed surface heat flux was
carried out. The heat flux from the reference run was used to
better facilitate the comparison with the rest of the results. The
simulations with prescribed heat fluxes do not show improvement
with respect to the reference model. In fact, simulations exhibit
turbulence collapse for a broader range of the model constant
when the surface heat flux is prescribed compared to runs with
dynamically computed fluxes.

Even though the results of the Smagorinsky–Lilly closure show
persistent dependence on all model parameters examined, for
several of the parameter combinations the differences with respect
to the reference model are small. The closure can accurately
capture moderately stable flows, in contrast to the conclusions of
previous studies. However, the a priori choice of the optimal
model constant value and grid spacing remains challenging
and it is likely flow-dependent. The present closure is purely
dissipative (always forward scatter of kinetic energy and potential
temperature variance). Therefore, the inclusion of backscatter

effects does not appear to be essential in modelling of moderately
stable boundary layers.
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