
The UCLA-LES: Version 1.1

Bjorn Stevens

August 22, 2007

Preface
This code (the UCLALES) is free for all to use, distribute, and call their own, following the guidelines of the

gnu public license. This I mean in the strictest sense, in that any results you get are your own responsibility.
This code grew out of the cloud and meso-scale modeling projects directed by Professors William R. Cotton

and Roger Pielke in the Department of Atmospheric Science at Colorado State University, where I took my PhD.
Most of the actual development in these projects was performed by Craig Tremback, now of Mission Research
Inc., Robert L. Walko, now at Rutgers, Greg Tripoli, now at the University of Wisconsin, and Jim Edwards, now
at NCAR with IBM, their collective efforts are reflected in many respects in this particular code — a descendant
of the code they developed. The actual development of this code was mostly done by myself with important
contributions by Jim Edwards (the initial parallelization); Graham Feingold, Verica Savic-Jovcic and Axel Seifert
(microphysics); Hsin-Yuan Huang also has implemented and tested a variety of subgrid models, which are not
incorporated in this distribution.

The main changes from version 1.0 is the finalization of the microphysical schemes, following adaptations to
the Seifert and Beheng approaches, along with the extention to allow for contributions in the basic-state pressure
consistent with, and exactly balancing, mean accelerations associated with deviations in the mean state buoyancy
from its isentropic value.

In using the code all I ask is that users be willing to help other users with problems, and that bug-fixes are
shared with others. It would also be nice if subsequent developments of the code were to be made available to its
community of users as well. Referencing the origin of the code would also be appreciated. Relevant references
in this regard are Stevens et al. (1999, 2005); Stevens and Seifert (2008). These references also document the
behavior of the code for a variety of test-cases developed in the context of the GEWEX Cloud Systems Studies
Boundary Layer Working Group.

1

Contents

1 Overview 3

a Model Equations . 3

b Parameterizations and Models . 5

i Turbulence . 5

ii Microphysics . 5

iii Surface Fluxes . 8

c Numerical Algorithms . 9

i Time-stepping . 9

ii Computational Grid . 10

iii Pressure Solver . 10

d Parallelization Strategy . 11

i Decomposition . 11

ii Parallel I/O . 11

iii Communication . 11

iv Strategies for the Future . 12

2 The Code 12

a Organization . 12

b Compilation: . 14

c Specialized model configurations . 14

3 Running the model 14

a The NAMELIST . 15

b Output . 16

c Post-processing: . 18

d Debugging: . 18

4 Getting started 19

2

1. Overview

The basic model is configured to solve an anelastic system of equations on the f -plane. It is written in

F90/95, and is parallelized using a one-dimensional decomposition and MPI. Its primary form of output

is NetCDF files, with FORTRAN binary output of history files.

The grid is doubly periodic (in x-y) and bounded in the vertical, z. The vertical is spanned by a

stretchable grid, the horizontal by uniform squares. Prognostic variables include the three components

of the wind (ui ≡ {u, v, w}); the liquid-water potential temperature, θl; the total-water mixing ratio,

qt; and as the case may be, an arbitrary number of scalars, φm, in support of microphysical processes,

more sophisticated sub-grid models, or studies of tracer transport or chemical processes. Time-stepping

of the momentum equations is by the leap-frog method. Scalars are advanced using a forward-in-time

step. Scalar advection is based on a directional-split monotone up winding method while momentum

advection uses directionally-split fourth-order centered differences.

a. Model Equations

The form of the equations solved by the model are (in tensor notation) as follows:

∂ūi
∂t

= −ūj
∂ūi
∂xj

− cpΘ0
∂π̄

∂xi
+
gθ̄′′v
θ0

δi3 + fk(ūj − uj,g)εijk +
1
ρ0

∂(ρ0 τij)
∂xj

, (1)

∂φ̄

∂t
= −ūj

∂ φ̄

∂xj
+

1
ρ0

∂(ρ0 γφj)
∂xj

+
∂Fφ
∂xj

δj3, (2)

subject to the anelastic continuity equation

∂(ρ0ui)
∂xi

= 0 (3)

and a constitutive equation which we take to be the ideal gas law for a perfect mixture:

θv = θ (1 + (Rv/Rd − 1)qt − (Rv/Rd)ql) . (4)

In the above π̃ = (p̃/p00)R/cp is the dynamic pressure perturbation. Fφ denotes a flux whose

divergence contributes to the evolution of φ (for instance radiation in the case of φ = θl), fk = {0, 0, f}

is the Coriolis parameter, uj,g is the geostrophic wind, and

τij ≡ uiuj − ūiūj and γφj ≡ φuj − φ̄ūj (5)

denote the sub-grid fluxes. In (2) φ denotes an arbitrary scalar. Depending on the level of microphysical

complexity this can include θl and qt or an arbitrary number of additional variables, for instance to

represent microphysical habits or categories. The symbols δjk and εijk denote the Kronecker-delta and

Levi-Civita symbol respectively.

3

The anelastic approximation solves for perturbations about a hydrostatic basic state of fixed potential

temperature, i.e.,
dπ0

dz
= − g

cpΘ0
, (6)

where subscript 0 denotes a basic state value, which depend only on z (Θ0 being constant). In (1) θ̄′′v

denotes the deviation of θv from its horizontal average (rather than from the basic-state). This ensures

that no mean vertical accelerations arise. For consistency this requires we introduce a second pressure,

π1 :
d

dz
(π0 + π1) = − g

cpθ̄v
, (7)

that contains the contribution of deviations from the Θ0 reference state to the pressure. This pressure

depends on time, and is updated in the code by finding the pressure that balances the mean accelerations,

such that
dπ1

dz
= Θ0w, (8)

with π1(z = 0) fixed at its initial value.

The model represents the First Law of thermodynamics by (2) with φ = θl. Where we define θl as:

θl = Tπ exp
(
−qlLv
cpT

)
(9)

Hence the model satisfies an approximate form of the First Law, but one generally consistent with the

overall level of approximation. In the above Lv, Rd, Rv, cp and p00 are thermodynamic parameters

which adopt standard values (see Table 1 as is g the gravitational acceleration.

Table 1: Default values of model constants

Constant Value
p00 105 Pa
Rd 287.04 J kg−1 K−1

Rv 461.5 J kg−1 K−1

cp 1004 J kg−1 K−1

Lv 2.5 ×106 J kg−1

Ω 7.292 ×10−5 s−1

g 9.80 m s−1

The continuity equation (3) yields π̃ through the inversion of the Poisson equation:

∂

∂xi

(
ρ0
∂π̃

∂xi

)
=

1
cpΘ0

[
∂

∂xi

(
−ρ0ūj

∂ūi
∂xj

+
ρ0gθ̄

′′
v

θ0
δi3 + ρ0fk(ūj − ujg)εijk +

∂(ρ0 τij)
∂xj

)]
,

(10)

4

b. Parameterizations and Models

i. Turbulence The sub-grid fluxes τij and γφj are not known explicitly and thus must be modeled. This

constitutes the model closure. The basic or default form of the closure makes use of the Smagorinsky

model, wherein

τij = −ρ0KmDij and γφj = −Km

Pr

∂φ̄

∂xj
, (11)

where

Dij =
∂ūi
∂xj

+
∂ūj
∂xi

is the resolved deformation,Km is the eddy viscosity, and Pr is an eddy Prandtl number. The Smagorin-

sky model calculates the eddy viscosity as

Km = (Cs`)2S

√
1− Ri

Pr
where Ri =

S2

N2
(12)

and

S2 ≡ ∂ūi
∂xj

Dij and N2 =
g

Θ0

∂θ̄v
∂z

. (13)

In the above Cs is the Smagorinsky constant and takes on values near 0.2, and

`−2 = (∆x∆y∆z)−2/3 + (zκ/Cs)−2,

where κ = 0.35 is the von Kármán constant in the model. The geometric averaging between a grid scale

and a length scale proportional to the height above the surface allows Km/(u∗z) to approach κ in the

neutral surface layer (the log-law).

Other options include Lagrangian averaged scale-dependent and scale-independent models (imple-

mented by Hsin-Yuan Huang) the Deardorff-Lilly sub-grid turbulence kinetic energy (TKE) model, and

for scalars the option of having all the dissipation carried by the numerics.

ii. Microphysics The model allows for a variety of microphysical complexity. In the standard distri-

bution a warm-rain microphysical scheme (level 3, imcrtyp 2) is implemented following the work of

Seifert and Beheng Seifert and Beheng (2001) as implemented in Stevens and Seifert (2008) In this

scheme cloud droplets are assumed to be in equilibrium with a fixed (specified) concentration. Cloud,

or rain, drops defined as liquid condensate with appreciable fall velocities are allowed to evolve under

the action of the ambient flow and microphysical processes (auto-conversion, accretion, self-collection,

sedimentation). The representation of these processes leads to the inclusion of two additional prognostic

equations, one for rain mass the other for rain concentration.

A saturation adjustment scheme (level 2, imcrtyp=0) is also implemented in the model. This scheme

has no rain category and diagnoses cloud drop mass concentrations by assuming homogeneity on the

5

grid-scale and equilibrium thermodynamics. By setting level=2 and taking imcrtyp=1 sedimentation of

cloud droplets can be implemented as a source term in the model.

The prognostic equations for the microphysical quantities used by the bulk (level 3, imcrtyp 2)

model, may be written as follows

∂ψ

∂t
+ u · ∇ψ −∇ · (Kψ∇ψ) = −wψ

∂ψ

∂z
+Kψ + Tψ (14)

where here ψ stands for a microphysical variable, in our case ψ ∈ {nr, rr}. The terms on the lhs

represent dynamic processes, and Kψ is the eddy diffusivity of ψ which we set to Kh the eddy diffu-

sivity of heat. The rhs terms represent different classes of microphysical processes. From left to right

these are: (i) sedimentation, with terminal velocity wψ; (ii) Kψ, the transformation of ψ due to kinetic

processes; and (iii) Tψ, the transformation associated with thermodynamic processes, which given our

assumption that condensation is carried entirely by the cloud droplets, includes only evaporation. Note

that the microphysical literature often speaks of kinetic effects in terms of molecular kinetics. At the

risk of confusing matters, here we use kinetic to describe microphysical transformations arising from

the interactions among drops, namely effects associated with droplet collisions, such as coalescence or

breakup.

The SB model is centered around the idea that the size distributions of cloud droplets and rain drops

can be described by separated (truncated) gamma distributions with a separation diameter, D∗ of 80

microns. The gamma distribution can be written as

f(D) = N0D
µ exp(−D/Dp), (15)

where Dp, is the mean diameter, and µ is the shape parameter. In the original formulation of the scheme

cloud droplets were allowed to have µ > 0, while µ was fixed to zero for rain drops. Here, motivated by

ongoing work examining evaporation, and the recent study of Milbrandt and Yau (2005), the formulation

is generalized to allow µ > 0 for the rain-drop mode as well. Formally

nr =
∫ ∞

D∗

f(D) dD and rr =
ρlπ

6

∫ ∞

D∗

D3f(D) dD (16)

where D∗ is the critical size separating drops from droplets, and ρl is the density of liquid water. Given

f , then the mean volume (or mass) diameter follows as

Dm =
[

1
nr

∫ ∞

D∗

D3f(D)
]1/3

, (17)

and the mean diameter is

Dp =
1
nr

∫ ∞

D∗

Df(D) (18)

6

For a gamma distribution with D∗ = 0 the relationships among the different microphysical moments, or

parameters, depends only on µ, for instance

Dp = [
6rr

πρwnr

1
(µ+ 3)(µ+ 2)(µ+ 1)

]1/3 and N0 =
nr

Γ(µ+ 1)
D−(µ+1)
p . (19)

Because evaluating the integrals over f(D) for D∗ 6= 0 yields incomplete Gamma functions, which are

computationally delicate to represent, D∗ is often taken to zero when evaluating moments or parameters

of the droplet distribution. In two-moment schemes µ usually enters as a parameter, although it can

be allowed to vary as a function of the other moments. For instance, for many of our simulations we

diagnose

µ = 10(1 + tanh(1200(Dm − 0.0014))) (20)

so that for small Dm the drop size distribution becomes exponential.

Neglecting the effects of variable density (which can be justified for shallow clouds, and is here done

solely for to streamline the discussion) the SB Model is as follows

K(sb)
rr = asb

r4c
N2
c

φcc(ε) + bsbrcrrφcr(ε) (21)

K(sb)
nr

=
ρlπ

6
D3
∗

(
asb

r4c
N2
c

φcc(ε)
)
− bsbnrrrβ(Dm). (22)

Here asb is a constant (Table 2) which is derived using the Long (1974) Kernel for collection and in-

corporates the assumed shape of the cloud-droplet distribution. Collisional breakup of raindrops, which

includes rebound effects, i.e., all effects of coalescence efficiencies less than unity, is represented by a

linear decrease of the self-collection rate, so that

β(Dm) =

{
1 Dm ≤ 0.3× 10−3

1000Dm − 1.1 Dm > 0.3× 10−3
. (23)

Non-equilibrium effects in auto-conversion and accretion are respectively modeled by the terms

φcc(ε) = 1 + 600
ε0.68(1− ε0.68)3

1− ε
and φcr(ε) =

(
ε

ε+ 5× 10−4

)4

(24)

with

ε = rr/(rc + rr). (25)

Here ε is to be thought of as a non-dimensional time that measures the progression of the cloud water

into rain water. The decomposition of the kinetic term into two additive terms is typical for bulk models,

whereby the first term is identified with a process called auto-conversion, and the second represents

accretion. Auto-conversion in most models does not depend on rr. The rr dependency of the auto-

conversion term of K(sb), through the φcc term, attempts to represent the effects of droplet spectral

ripening (Cotton 1972; Lüpkes et al. 1989).

7

Sedimentation in SB is determined through a specification of the sedimentation velocities, which we

write as

wnr ≡
R ∞

D∗ WT (D)f(D) dDR ∞
D∗ f(D) dD

= 9.65
[
1− csb (1 + 600Dp)

−(µ+1)
]

(26)

wrr =
R ∞

D∗ WT (D)D3f(D) dDR ∞
D∗ D

3f(D) dD
≡ 9.65

[
1− csb (1 + 600Dp)

−(µ+4)
]
, (27)

where WT is the terminal velocity which depends only on the size of the drop, and csb is a constant,

whose value along with other constants used by the scheme are given in Table 2. This formulation

differs from the original proposal of SB.

Table 2: Constants for Microphysical Model.
Constant Values
asb 1.408 × 1019

bsb 5.78
csb 1.015113

Table 3: Similarity constants for surface layer.

Constant Value
Pr 0.74
κ 0.35
ah 7.8
am 4.8
bh 12.0
bm 19.3

iii. Surface Fluxes To enforce the boundary conditions the model can either implement free slip or no-

slip boundary conditions on the grid-scale tangential velocities, with free-slip being the default. These

grid-scale quantities do however feel accelerations, or tendencies as a result of sub-grid scale fluxes

which are parameterized. The model supports different methodologies for specifying the sub-grid fluxes

at the lower boundary. They can be prescribed, calculated based on prescribed gradients, or prescribed

surface properties. For the latter two similarity functions are chosen to relate the fluxes at the surface to

the grid-scale gradients there. The similarity functions used by the model are as follows:

Φh ≡ κz

θ∗

(
∂θ̄

∂z

)
=

{
Pr(1 + ahζ) ζ > 0
Pr(1− bhζ)−1/2 ζ ≤ 0

(28)

Φm ≡ κz

u∗

(
∂ū

∂z

)
=

{
(1 + amζ) ζ > 0
(1− bmζ)−1/2 ζ ≤ 0

(29)

8

where

ζ = z/λ and λ =
Θ0

gκ

(
u2
∗
θ∗

)
is the Monin-Obukov length scale. The similarity constants in this formulation are listed in Table 3.

c. Numerical Algorithms

un un+1 un+2 un+3 un+4
φn φn+1 φn+2 φn+3 φn+4

A

B

Figure 1: Schematic depiction of the model time-step. Note that in the code up corresponds to un and
uc corresponds to un+1.

i. Time-stepping The model uses a hybrid time-stepping strategy. At the top of the timestep velocities

are given at time level n and n + 1 and scalars are given at time level n. The scalars are then marched

forward using an Euler forward step to time-level n + 1. Velocities from time-level n are then taken

forward using a leapfrog step to time-level n+2 which concludes a single step. On a timestep tendencies

are accumulated in a tendency array and then applied at the end of the step. An exception to this is the

subgrid fluxes, which involve what looks like a vertical diffusion operation. The vertical component of

this operation is solved semi-implicitly which requires a sparse matrix solve (a tri-diagnonal solver). The

new velocity is then differenced with the old velocity to define an effective forward tendency which is

accumulated like the other forcings in the tendency array. Mathematically, if the time-level is indicated

by a superscript, then(
∂φ

∂t

)
sgs

=
φ̃n+1 − φn

∆t
where φ̃n+1 = φn + ∆t

∂

∂z

(
Kn∂φ̃

n+1

∂z

)
(30)

and K ≡ Km/Pr is the eddy diffusivity. Another exception is the pressure gradient term which is

solved so as to ensure that the discretized version of

∂

∂xi
(ρ0ūi) = 0 (31)

is satisfied to machine precision.

The model employs a variable timestep, which is determined so as to maintain the CFL with the

range of 0.65 and 0.85. If these bounds are violated the timestep is adjusted back to the middle of the

range. This requires a recalculation of un+1 to make it consistent with the new timestep, which we

9

u(3,i+1)u(3,i-1) T(3,i)

T(2,i+1)

T(3,i+1)

T(1,i+1)

w(1,i)

w(2,i)

w(3,i)

w(2,i+1)

zm(3)

zm(2)

zm(1)=0

dzt(k) = 1/(zm(k)-zt(k-1))zt(2)

zt(3)

zt(4)

dzm(k) = 1/(zt(k+1)-zt(k))

u(2,i)

u(1,i)

u(3,i)

zt(1)

Figure 2: Schematic depiction of the model grid and where variables locate on it.

accomplish as follows:

un+1 = un +
∆t
∆t̃

(ũn+1 − un), (32)

where ũn+1 and ∆t̃ represent the original values of un+1 and ∆t.

ii. Computational Grid The model uses the Arakawa-C grid, which means that u(k, i, j) lies ∆x
2

meters to the right of θl(k, i, j) To state this more generally, velocities are staggered half a grid point

up-grid (in the direction of the specific velocity component) of the thermodynamic and pressure points.

Also note that the grid indexing has the z dimension first.1 This k, i, j indexing is chosen in realization

of the fact that many of the operations in the model are done column-wise. The grid configuration, and

some height variables that are commonly used in the code (i.e., zm, zt, dzm, and zt) are illustrated in a

schematic drawing in Fig. 2.

iii. Pressure Solver Pressure is solved by a fractional step method so as to ensure that the velocities at

the end of the timestep satisfy (3) to machine accuracy. The solver takes advantage of the periodicity in

the horizontal to use 2-D FFTs to transform the Poisson-equation to a second order ODE in the vertical.

Schematically
∂2π

∂x2
i

−→ (k2 + l2)
d2π

dz2
, (33)

where k and l denote the horizontal wave-numbers. The resultant ODE is then solved using a tri-

diagnonal solver.
1Although given the way the model is written, this is merely a social contract among the various subroutines and thus could

be changed.

10

d. Parallelization Strategy

i. Decomposition The parallelization is performed by decomposing the domain into sub-domains con-

sisting of strips in the x-z plane. This is a 1D decomposition in that the parallelization is only along one

of the dimensions, y.What results isNp x-z slices consisting ofNy/Np points in the y-direction. Where

Np denotes the number of processors (strips) andNy is the total number of unique y-points. The way the

memory is organized this has almost no impact on the code but requires that the strips have at least two

unique y points. It also allows us to use domain-independent indexing, so that j ∈ {1, . . . , Ny/Np + 4}

where j is the y−index. The addend of four represents the contribution from the ghost points. The

width of the ghost-strips depends on the size of the largest stencil used for a differencing computation

in the code. In our case the fourth order differences in the treatment of momentum fluxes. The ef-

fect of the ghost-strips is to increase the number of grid-points. The total number of grid-points, Nt

is thus processor dependent. The overhead of the ghost-points can be measured by forming the ratio

R(Np) = Nt(Np)/Nt(1). For the 1D decomposition with ghost-strips two points deep:

R(Np) = 1 + 4
Np − 1
Ny + 4

For Np = Ny/2 limNp→∞R(Np) = 3. Because every computation need not be performed on a ghost

point, the maximum cost of the computation at the finest decomposition is some fraction of this. We

have found that for sufficiently large domains the code still scales well at its maximum possible decom-

position. That said the best balance between efficiency and total time for execution is usually found with

Ny/Np around 8.

ii. Parallel I/O I/O is currently handled by each processor. For binary history writes MPI I/O is used

to construct a single history file so as to allow compatibility with sequential versions of the model.

Otherwise, statistical and analysis files are constructed for individual sub-domains and then stitched

together as necessary during the post-processing.

iii. Communication With the current 1-D parallelization strategy global communications are only

needed to implement boundary conditions, compute domain integrals (such as means and co-variances),

and calculate the FFTs. The latter is the most significant issue. Currently the FFTs are first computed in

the x−direction (along a strip), then the domain is transposed into strips in the y−direction. This makes

use of the fact that Ny must equal Nx in the current version of the code. After the transpose the FFTs

are computed in the y-direction and then the vertical solver (tri-diagonal) solves the ODE (over z) in

the transpose space. The inverse FFTs are then done in this transpose space, then the inverse transpose

11

is performed before computing the inverse FFT along the strips in the x-direction. This strategy only

requires two global communications per solve.

iv. Strategies for the Future Because the 1-D decomposition limits the degree of parallelization (the

largest to date being a run on 256 processors) we are looking to construct a version with a 2-D decom-

position. This would, in principle, allow us to use NxNy/4 processors, i.e., more than 4 million with

Nx = Ny = 4096. The normalized computational overhead associated with the ghost strips would also

be mitigated, with

R(Np) = 1 +
16(Np − 1) + 4(Nx +Ny)

√
Np

NxNy + 16

For Nx = Ny = 2
√
Np � 1 this ratio approaches 7, although the communication overhead of such a

large computation is more likely to be the bottleneck. In any case this appears to be a viable strategy for

taking advantage of machine architectures available in the foreseeable future, but it would require more

intensive communication, perhaps at least four global communications per solve.

2. The Code

a. Organization

The distribution is spread among three directories: bin, src, misc.

The code itself resides in src and is organized in F90 modules. These are described in Table 4.

This directory also contains two subdirectories seq and mpi where the sequential or MPI modules are

stored upon compilation. In addition rfft.F contains the Swartztrauber FFT routines which are called

from the util module, and omp interface.F90 contains and Open MP interface which is under construc-

tion/consideration in support of finer grained parallelization, but which is not used. Lastly a Makefile

here formed by the master Makefile in bin defines the specific compilation/archive rules. To add new

modules requires modification of this makefile.

The bin directory contains job control scripts and Makefiles. The model is compiled from this

directory (usually by typing make, or make mpi, or make seq) and typically executed from here as well.

The NAMELIST file defines any non-default input.

The misc directory is a catchall for other useful things, for instance alternative statistical or forcing

routines are stored in subdirectories. Here code changes specific to past GCSS cases, or idealized sim-

ulations such as free convection are stored. To implement them requires copying the appropriate code

to the src directory and the appropriate NAMELIST to the bin directory. Codes used to construct initial

soundings also appear hear.

12

Table 4: Module F90 Files in src directory

Module Contains

LES Main program which calls a timing routine and the driver, as well as the driver subroutine
and the subroutine which defines and reads the model NAMELIST file.

advf Calculates the tendencies associated with scalar advection.
advl Calculates the tendencies associated with momentum advection.
defs Defines physical constants.
forc Case specific forcings (radiation, subsidence, etc.)
grid Definition of grid, allocation of memory and I/O management
init Routines for processing input (either from a file or the NAMELIST), definition of basic

state, initialization of fields, and definition of initial random perturbations.
mcrp Bulk microphysical routines
mpi interface Definition of MPI parameters (use MPI) and MPI routines for the domain decomposition
mpi io MPI I/O Routines
prss Poisson solver, calculates the velocity tendencies associated with pressure gradients, also

implements time-filter for leapfrog scheme and updates velocity.
sgsm Subgrid scale solver.
srfc Surface boundary condition routines
stat Routines for calculating, accumulating and outputting model statistics. Statistical output

is provided through the course of a simulation and tends to be problem specific.
step Time stepper. Also includes several routines for computing tendencies due to phys-

ical processes (Coriolis force, buoyancy) or boundary conditions (Rayleigh friction for
sponge layer near lid). Updating of scalars is done here. CFL computations and timestep-
regridding are also here.

thrm Thermodynamic routines for calculating quantities like temperature, and cloud water,
given the thermodynamic state of the model, i.e., θl, qt, ρ0, π0,Θ0.

util A collection of basic utilities including boundary conditions, FFT calls, explicit array
operations such as domain or slab averaging or covariances, the tri-diagonal solver, and
some NetCDF utilities. Many of the routines in this module make active MPI calls.

13

b. Compilation:

To compile the model type “make” in the the bin directory. This will build the default version of the

model using the default architecture. To compile the code on different machines bin/Makefile must be

adjusted. Currently there are settings to compile on IBM, Macs with IBM/Motorola processors and the

XLF compiler, and Linux. The code compiles and runs with G95 but our experiences to date with this

compiler suggest that it produces executable which is a factor of two or more slower than commodity

compilers.

The model requires the NetCDF libraries to build, and where they locate needs to be specified in bin.

Our experiences with the most aggressive optimization has been generally positive on the IBMs, less so

on the Mac. Fine tuning the optimization can lead to performance gains of 50% or more, but aggressive

optimisation (O3 or greater on XLF compilers) should be checked. For computations with more than

128 points in a horizontal direction the code should be promoted to double precision, if only to yield

better defined global integrals. One such integral that ends up being important is the mean buoyancy

which must be subtracted from the local buoyancy so as to not cause any mean accelerations.

c. Specialized model configurations

Perhaps the best way to learn how to configure the model for different problems is to look at the configu-

ration templates in the misc directories. Here sub-directories (e.g., cumulus, gcss dycoms, etc.,) contain

substitute forcing, statistical and other modules, as well as alternate NAMELIST files. These are de-

signed to run specific past cases and produce output required by them. Looking over how this is done

in the code could provide an example of how to set up your own case, and statistical output. Starting

from a case that is close to your desired objectives would naturally be the most straightforward way to

proceed.

3. Running the model

To run the model simply type the name of the executable, otherwise one can submit it using a batch

scheduler. The latter is almost always necessary in parallel programming environments. Runs scripts

used to schedule the job using IBM Loadleveler or IBM Load Sharing protocols are provided in the misc

directory.

14

a. The NAMELIST

Model execution can be controlled by NAMELIST parameters. If a NAMELIST parameter does not

appear in the NAMELIST file for a particular instance of the model execution, then the default for

that variable is assumed. In Table 5 we list the NAMELIST variables, their default values, the mod-

ule in which they locate, and specialized behavior which can be obtained by specifying non-standard

NAMELIST values.

Table 5: NAMELIST variables and default values

Variable Module Default
Value

Comments

nxp grid 132 total number of x points (Ny + 4)
nyp ” 132 total number of y points (Ny + 4)
nzp ” 105 total number of z points
deltax ” 35.0 m grid spacing in x-direction
deltay ” 35.0 m grid spacing in y-direction
deltaz ” 37.5 m grid spacing in z-direction
dzrat ” 1.02 grid stretching ration (default 2% per interval)
dzmax ” 1200 m height at which grid-stretching begins
dtlong ” 1.5 s maximum timestep
nfpt ” 5 number of levels in upper sponge layer
distim ” 300 s minimum relaxation time in sponge layer
th00 ” 288 basic state potential temperature, Θ
igrdtyp ” 1 Control parameter for selecting vertical grid
isgstyp ” 1 Control parameter for selecting sgs model
iradtyp ” 1 Control parameter for selecting radiation model
imcrtyp ” 1 Control parameter for selecting microphysical

model
naddsc ” 0 Number of additional scalars

CCN ” 150 ×106 Cloud droplet mixing ratio
expnme ” Default Experiment name
filprf ” test. File prefix for use in constructing output files
runtyp ” INITIAL Type of run (’INITIAL’ or ’HISTORY’)
ipsflg init 1 control parameter for input sounding (0: pressure in

hPa; 1: height in meters with ps(1)= psfc)
itsflg ” 1 control parameter for input sounding (0: ts = θ; 1:

ts = θl)
us ” n/a input zonal wind souding (max nns=150 points)
vs ” n/a input meridional wind souding (max nns=150

points)
ts ” n/a input temperature souding (max nns=150 points)
rts ” n/a input humidity souding (max nns=150 points)
ps ” n/a input pressure sounding (max nns=150 points)
hs ” n/a vertical position (max nns=150 points)
iseed ” 0 random seed
zrand ” 200 m height below which random perturbations are added

15

Table 5: NAMELIST variables and default values

Variable Module Default
Value

Comments

hfilin ” test. name of input history file for HISTORY starts
timmax step 10800 s final time of simulation
frqhis ” 3600 s history write interval
frqanl ” 3600 s analysis write interval
outflg ” True output flag (true/false)
slcflg ” False write slice output (true/false)
istpfl ” 1 print interval for timestep info
corflg ” False coriolis acceleration (true/false)
radfrq ” 0 radiation update interval
strtim ” 0 GMT of model time
cntlat ” 31.5◦ N model central latitude
isfctyp srfc 0 surface parameterization type (0: specified fluxes;

1: specified surface layer gradients; 2: fixed lower
boundary of water

ubmin ” 0.20 minimum u for u∗ computation
zrough ” -0.01 Momentum roughness height (if less than zero use

Charnock relation)
sst ” 292 K Sea Surface Temperature
dthcon ” 100

Wm−2
Surface temperature gradient (itsflg=1) or surface
heat flux (itsflg=0)

drtcon ” 0 Wm−2 Surface humidity (mixing ratio) gradient (itsflg=1)
or surface latent heat flux (itsflg=0)

csx sgsm 0.23 Smagorinsky Coefficient
prndtl ” 1/3 Prandtl Number (if less than zero no sgs for scalars)
savg intvl stat 1800 s statistics averaging interval
ssam intvl ” 30 s statistics sampling interval

The execution is controlled by a number of model parameters which are given default specifications

in the code. These specifications can be modified in the NAMELIST file so as to allow multiple execu-

tion without recompilation. The full NAMELIST is defined in the LES.F90 subroutine and is described,

along with default parameter values, in Table 5.

b. Output

In addition to standard output, the model writes five types of files, all of which are controlled by options

in the NAMELIST file, and the nature of the statistical routines in module stat.

History files: Fortran binary files which are given the name $(filprf)h.time where “time” is the time

in seconds of the history write and $(filprf) is the string associated with filprf in the NAMELIST file.

History files contain the necessary data to restart the model from a given time and integrate it forward.

16

If you run the model for two hours and write a history file every hour, you should be able to generate the

data of the second hour identically by restarting the model from the history file, $(filprf)h.3600s written

at the end of the first hour and integrating forward for an hour. In addition three other types of history

files are written $(filprf).iflg is written if the model is stopped due to a CFL violation; $(filprf).R at

the first timestep; $(filprf).h.rst is the history state at the point when statistical averages are output (i.e.,

every savg intvl seconds this file is overwritten with the current state). Restarting from this file helps

restart the model form the latest data.

Analysis file: Space-time volumes that are useful for doing data analysis on select three-dimensional

fields are output periodically. In sequential runs this is a single file with the name $(filprf).nc, in parallel

runs this consists of Np files, one for each sub-domain with the name $(filprf).####.nc where ####

denotes the sub-domain number (beginning at 0). These data are redundant with the history files, but

less dense and in NetCDF, which allows for more more frequent, output.

Slice file: Writes NetCDF output documenting the model state for slices across the sub-domain. These

are in x−z, y−z, and x−y. The naming convention is similar to that for analysis files, but with the word

“slice” included between the file prefix and its suffix, i.e.,$(filprf).slice.0012.nc for the 13th sub-domain.

These files are most useful for writing output at very short temporal intervals for making movies.

Profile statistics: This is a NetCDF file called $(filprf).ps.nc for a sequential run or $(filprf).ps.####.nc

for a parallel run. It contains profile statistics averaged over the averaging interval, with the number of

samples determined by savg intvl/ssam intvl (see Table 5). The ability of the model to calculate statistics

on the fly can lead to more economical output and more accurate statistics. Our primary motivation for

doing this is, however, that in general it is very important to use the same algorithm to calculate statistics

(say fluxes for instance) as is used by the model to timestep the field. Given that, one might as well do

the averaging during the course of a run. This method of averaging also makes it easier to generate finer

grained statistics.

Temporal Statistics: This is a netCDF file called $(filprf).ts.nc for a sequential run or $(filprf).ts.####.nc

for a parallel run. It contains selected time-series statistics which can be useful for getting a fine-grained

view of the evolution of a calculation. Note that the parallel statistics are often computed only over a

sub-domain and deriving the appropriate domain averaged quantity can be difficult.

Standard output: A number of fields are written to standard output. These include information about

how the model is configured and how long a timestep is taking.

17

c. Post-processing:

I perform almost all of my post-processing using NCL (the NCAR Command Language). This is a

powerful data analysis, visualization, file-handling scripting language that is free and distributed by

NCAR and handles NetCDF data intuitively. In the misc/analysis directory are some NCL files I use to

process data. Similarly in misc/synthesis one should find the script reduce.ncl, which is used to reduce

statistical (ps and ts) files written over many sub-domains to one file valid for the entire domain.

Other Useful Scripts: misc/synthesis/rename.csh is used to rename all the files produced by a run.

The file misc/synthesis/reformat.ncl was created to reformat the RICO output to conform with the case

specifications. It provides an example how to process the statistical data, particularly the conditionally

sampled data compiled over many processors. misc/synthesis/call mss.csh invokes misc/scripts/mss.csh

to transfer files to the NCAR Mass storage facility. misc/scripts/resubmit.csh resubmits jobs after suc-

cessful termination by changing the NAMELIST and calling the job scheduler. It was designed for

the IBM SP systems. In misc/analysis examples of plotting scripts are shown, these include scripts

for putting the model together to look at fields spanning many processors (e.g., parallel.ncl). As well

as generic scripts to plot files using ncl with command line arguments, i.e., plotfld.ncl, or a csh script

plotfld.csh which invokes it.

d. Debugging:

My preferred way to debug the model is to track the evolution of the model state using print statements.

I usually insert these between subroutine calls to specific processes in the t step routine in Module step

so as to isolate problems. When debugging it is useful to have some idea of how physical variables relate

to model variables, which is the purpose of Table 6.

Table 6: Model variables

Array Dimensionality Field
a up,a vp,a wp 3D un, vn, wn

a uc,a vc,a wc ” un+1, vn+1, wn+1

a ut,a vt,a wt ” ∂tu, ∂tv, ∂tu

a tp,a tt ” Liquid water potential temperature, θ
′ n
l , ∂tθl

a rp,a rt ” Total water mixing ratio rnt , ∂trt
a rpp,a rpt ” Rain mass mixing ratio rnr , ∂trr (for level 3)
a npp,a npt ” Rain number mixing ratio, nnr , ∂tnr (for level 3)
a theta ” Potential temperature, θ (diagnosed from model state)
a rc,a rv ” Condensate and vapor mixing ratio rc, rv (note that rc can be

either the cloud or total condensate mixing ratio depending on
when it is accessed)

18

Table 6: Model variables

Array Dimensionality Field
a press,
a pexnr

” Pressure and Exner function, p, π respectively

a scr1, a scr2 ” Three dimensional scratch arrays
a sclrp, a sclrt 4D Additional scalars valid at time level n and their tendency (4th

dimension is naddsc and identifies which additional scalar).
a ustar, a tstar,
a rstar

2D Surface scales, u∗, θ∗, r∗ respectively

uw sfc, vw sfc,
ww sfc

” Surface momentum fluxes, u′w′, v′w′, w′w′ respectively.

wt sfc, wq sfc ” Surface thermodynamic fluxes, w′θ′, w′r′ respectively.
precip ” Precipitation flux
dn0 1D Basic state density, ρ0(z).
xt, yt, zt ” Position of thermodynamic points
xm, ym, zm ” position of momentum points
dzt ” 1/(zm(k)− zm(k − 1)
dzm ” 1/(zt(k + 1)− zt(k)

4. Getting started

In this section we show some basic profiles some of the basic cases. By comparing your simulations

with these you can get an idea if the model is behaving as it should. To help in these comparisons,

sample ps and ts files are provided for the smoke, rico and dry CBL (dcbl) cases in the sub-directory

doc/sample output.

RICO: To run this case we copied all the misc/variants/gcss rico source (F90) code into the source

directory and compiled the model. The NAMELIST file was adapted (to allow us to run in two stages)

from the NAMELIST file also in the gcss rico directory. The run was performed in two stages on

64 processors (two virtual processors per real processor) using run.lsf on the IBM power5 BlueVista

Machine. It took about 4.5 hours of real time to compute 24 hours of simulated time.

The output was processed by first reducing the ts and ps files, then reformatting them to the GCSS

specifications, then plotting. An example of the thermodynamic state averaged over the last four hours

of the simulation is shown in Fig. 4. These results will differ slightly from those submitted as part of the

GCSS RICO intercomparison because of slight changes used in the microphysics in the present case,

namely drop breakup and ventilation effects were included.

Dry CBL: To run this case we revert to the original or default code by copying the misc/variants/original

source (F90) code into the source directory and compile the model. The NAMELIST file was also taken

19

Figure 3: Thermodynamic profiles showing θl, rt, rc, core cloud fraction and rain rate (in energetic
units) averaged over the last four hours of a 24 hour simulation.

from the original directory. The run was performed using run.lsf on the IBM power5 BlueVista Machine.

It took less than an hour to finish four hours of simulated time.

Figure 4: Mean potential temperature profile for sample (default) dry convective boundary layer sim-
ulation. Profiles show profiles averaged over 15 minutes plotted at 30 min intervals, with initial state
(actually state at the end of the first timestep) shown by solid line.

The evolution of this run is shown in Figure ?? by the profiles of θ at half hour intervals, where each

profile is a 15 minute average.

Smoke: Finally in Figure 5 we show the evolution of the smoke cloud case. For this plot we show

the half hour averaged profiles for the periods ending at 2 and 4 hrs. The initial state is also shown by

20

Figure 5: Mean potential temperature profile for smoke cloud simulation. Shown oare profiles of θ and
smoke concentration averaged over 30 minutes plotted at 2 hr intervals, with initial state (actually state
at the end of the first timestep) shown by solid line.

the solid line. What we see in the mean profiles is the expected propagation of the smoke layer into the

overlying fluid, accompanied by the dilution of the smoke layer. The slight instability at the top of the

smoke layer (θ decreasing with height) is the signature of the radiative cooling active in this case.

References

Cotton, W. R., 1972: Numerical simulation of precipitation development in supercooled cumuli-part I.

Mon. Wea. Rev., 100, 757–763.

Long, A. B., 1974: Solutions to the droplet coalescence equation for polynomial kernels. J. Atmos. Sci.,

31, 1040.

Lüpkes, C., K. D. Beheng, and G. Doms, 1989: A paraemeterization scheme simulating warm rain

formation due to collision/coalescence of water drops. Contributions to Atmospheric Physics, 62,

289–306.

Milbrandt, J. A. and M. Yau, 2005: A multimoment bulk microphysics parameterization. part I: analysis

of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.

Seifert, A. and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion,

accretion and self collection. Atmos Res, 59-60, 265–281.

Stevens, B., C.-H. Moeng, A. S. Ackerman, C. S. Bretherton, A. Chlond, S. de Roode, J. Edwards,

J.-C. Golaz, H. Jiang, M. Khairoutdinov, M. P. Kirkpatrick, D. C. Lewellen, A. Lock, F. Müller,

D. E. Stevens, E. Whelan, and P. Zhu, 2005: Evaluation of large-eddy simulations via observations of

nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 1443–1462.

21

Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven con-

vection: sensitivities to the representation of small scales. J. Atmos. Sci., 56, 3963–3984.

Stevens, B. and A. Seifert, 2008: On the sensitivity of simulations of shallow cumulus convection to

their microphysical representation. J. Meteorol. Soc. Japan.

22

